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ML estimation for complete data

• Notation
Nodes X1, X2, . . . , Xn
Examples t = 1, 2, . . . , T
Complete data {(x1t, x2t, . . . , xnt)}Tt=1

• ML estimates for CPTs

root
nodes PML(Xi=x) =

count(Xi=x)
T

=
1
T
X

t
I(xit, x)

nodes
with

parents
PML(Xi=x|pai=⇡) =

count(Xi=x, pai=⇡)
count(pai=⇡)

=

P
t I(xit, x) I(pait,⇡)P

t I(pait,⇡) 4 / 167
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ML estimation for incomplete data

• Notation

Nodes X1, X2, . . . , Xn
Examples t = 1, 2, . . . , T
Visible nodes Vt=vt for tth example

• EM algorithm

Initialize CPTs to nonzero values.
Repeat until convergence:

E-step — compute posterior probabilities.
M-step — update CPTs:

root
nodes P(Xi=x)  � 1

T
X

t
P(Xi=x|Vt=vt)

nodes with
parents P(Xi=x|pai=⇡)  �

P
t P(Xi=x, pai=⇡|Vt=vt)P

t P(pai=⇡|Vt=vt)
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Complete versus incomplete data

• Complete data
root
nodes PML(Xi=x) = 1

T
P

t I(xit, x)

nodes
with

parents
PML(Xi=x|pai=⇡) =

P
t I(xit,x) I(pait,⇡)P

t I(pait,⇡)

• Incomplete data

root
nodes P(Xi=x)  � 1

T
P

t P(Xi=x|Vt=vt)

nodes
with

parents
P(Xi=x|pai=⇡)  �

P
t=1 P(Xi=x,pai=⇡|Vt=vt)PT

t=1 P(pai=⇡|Vt=vt)
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Key properties of EM

• No learning rate

The updates do not require the tuning of a learning
rate (⌘ > 0), as in purely gradient-based methods.

• Monotonic convergence

Changes to CPTs from the EM updates always increase
the incomplete-data log-likelihood L =

P
t log P(Vt=vt).

7 / 167



EM Example

BA C

Incomplete data {(at, ct)}Tt=1
A and C are observed.
B is hidden.

• E-step (Inference)

P(b|at, ct) =
P(ct|b)P(b|at)P
b0 P(ct|b0)P(b0|at)

• M-step (Learning)

P(a) =
1
T count(A=a)

P(b|a)  �
P

t I(a,at)P(b|at, ct)P
t I(a,at)

P(c|b)  �
P

t I(c, ct)P(b|at, ct)P
t P(b|at, ct) 8 / 167

L =

~

X

W
T



EM Application



Application

• Statistical language modeling

Let w` denote the `th word in a corpus of text.
How to model P(w1,w2, . . . ,wL)?

• Markov models

model P(w1,w2, . . . ,wL) ML estimate DAG

unigram
Q

` P1(w`) P1(w) = count(w)
L w1 w2 · · · wL

bigram
Q

` P2(w`|w`�1) P2(w0|w) = count(w!w0)
count(w) w1 ! w2 ! · · · ! wL

trigram
Q

`P3(w`|w`�1,w`�2)
...

...

• Evaluating n-gram models
Train on corpus A =) P1(A)  P2(A)  P3(A) . . .

Test on corpus B =) P2(B) = 0 if B has unseen bigrams.
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Word clustering

• Alternative to bigram model

Insert a hidden node Z 2 {1, 2 . . . , C} between the previous and
next words W,W0 2 {1, 2, . . . , V}.

Words W and W0 are observed (as before).
The node Z is a latent variable to detect word clusters.

• Conditional probability tables

P(z|w) is the probability that word w is mapped into cluster z.
P(w0|z) is the probability that word w0 follows any word in
cluster z.
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Computing P(w0|w)

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

28 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

29 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

30 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w)

=
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

31 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w)

marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

32 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

33 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w)

product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

34 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

35 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w)

conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

36 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

37 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

38 / 167



Computing P(w0|w)

ZW W’

• Inference

P(w0|w) =
X

z
P(w0, z|w) marginalization

=
X

z
P(w0|z,w)P(z|w) product rule

=
X

z
P(w0|z)P(z|w) conditional independence

• Matrix factorization

The above expresses the matrix
V⇥Vz }| {

P(w0|w) as the product of
the two smaller matrices P(w0|z)| {z }

V⇥C

and P(z|w)| {z }
C⇥V

.

39 / 167



Model complexity

• Parameter count

size of vocabulary V
number of clusters C
parameters in cluster model 2CV P(w0|z),P(z|w)
parameters in bigram model V2 P(w0|w)
parameters in unigram model V P(w)

• Compact representations of complex worlds

Setting C=1, we recover the unigram model.
Setting C=V , we recover the bigram model.
In between, we are exploring a range of different models.
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

• E-step – Inference

P(z|w`,w`+1) =
P(w`+1|z)P(z|w`)P
z0 P(w`+1|z0)P(z0|w`)

• M-step – Learning

P(z|w)  �
P

` I(w,w`)P(z|w`,w`+1)P
` I(w,w`)

P(w0|z)  �
P

` I(w0,w`+1)P(z|w`,w`+1)P
` P(z|w`,w`+1)
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Experimental results

• Data set

60K-word vocabulary
80M-word corpus of news articles
count(w ! w0) is 99% sparse.

• Model

The goal is to estimate P(z|w) and P(w0|z).
For C=32 clusters, these CPTs have 3.84M entries.
EM converges in 30 iterations.

• Results

The model has no prior knowledge of word meanings.
Which words does it cluster? Look at argmaxz P(z|w).
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Word clusters

The table shows the most likely cluster assignments argmaxz P(z|w)
for the 300 most common tokens in the corpus.
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Example : Noisy-OR

xi 2 {0, 1}

P(Y=1|x1, x2, . . . , xn) = 1�
Qn
i=1(1� pi)xi

The log (conditional) likelihood is
P

t log P(yt|xt).
How to estimate parameters pi 2 [0, 1] that maximize this?

EM — but how? Isn’t the data complete?
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EM for noisy-OR

xi 2 {0, 1}

zi 2 {0, 1}
P(Zi=1|xi) = pixi

P(Y=1|Z1, . . . , Zn) = OR(Z1, . . . , Zn)

HW 5

First you will show that this model is equivalent to noisy-OR.
Then you will derive the EM updates for pi 2 [0, 1].
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Hidden Markov Models



Markov Models (Review)

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Two simplifying assumptions:

1. Finite Context
2. Position Invariance
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Hidden Markov models (HMMs)

• Random variables
St 2 {1, 2, . . . ,n} hidden state at time t
Ot 2 {1, 2, . . . ,m} observation at time t

• States versus observations

Each observation Ot is a noisy, partial reflection of the true
underlying (but hidden) state St of the world at time t.

What makes this model so useful?
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.

Ot 2 {sleeping, eating, barking, waiting by door, etc.}
St 2 {playful, hungry, tired,ready to burst}

Does she need to go outside?
What is P(st|o1,o2, . . . ,ot)?
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Speech recognition

Ot is the acoustic feature vector for windowed speech at time t.
St is the unit of language (e.g., phoneme) being uttered at time
t.

What did I just hear?
What is argmax s1,s2,...,sT P(s1, s2, . . . , sT |o1,o2, . . . ,oT)?
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Indoor robot navigation

Ot encodes the sensor readings at time t.

St encodes the robot location at time t.

Location in the room: what is P(st|o1,o2, . . . ,ot)?
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HMMs as belief networks

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Q. Which of the following statements are True?

A. P(St|S1, S2, . . . , St�1) = P(St|St�1)

B. P(Ot|S1, S2, . . . , St) = P(Ot|St)

C. P(St|St�1) = P(St|St�1,Ot)

D. A and B

E. A, B and C

126 / 167

D

# =

-

-
-

->
-

No



HMMs as belief networks

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

• Conditional independence assumptions

P(St|S1, S2, . . . , St�1) = P(St|St�1)
P(Ot|S1, S2, . . . , ST) = P(Ot|St)

• CPTs are shared across time
P(St=s0|St�1=s) = P(St+1=s0|St=s)
P(Ot=o|St=s) = P(Ot+1=o|St+1=s)

• Joint distribution
P( S1, . . . , ST| {z }

~S

,O1, . . . ,OT| {z }
~O

) = P(S1) P(O1|S1)
TY

t=2


P(St|St�1) P(Ot|St)
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Parameters of HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Q. Which of the following is NOT a parameter of the model?

A. P(St|St+1)

B. P(S1)

C. P(Ot|Ot�1)

D. P(Ot|St)

E. More than one of these is NOT a parameter of the model.
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Parameters of HMMs
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aij = P(St+1= j|St= i) n⇥n transition matrix

bik = P(Ot=k|St= i) n⇥m emission matrix

⇡i = P(S1= i) n⇥1 initial state distribution

HMM is a polytree. True or False?
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Key computations in HMMs1

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

POLYTREE!

Inference
1. How to compute the likelihood P(o1,o2, . . . ,oT)?
2. How to compute the most likely state sequence argmax~s P(~s|~o)?
3. How to update beliefs by computing P(st|o1,o2, . . . ,ot)?

Learning

How to estimate parameters {⇡i,aij,bik} that maximize the
log-likelihood of observed sequences?
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That’s all folks!
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