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ML estimation for complete data

- Notation

Nodes X1, Xz, ..., Xn
Examplest=1,2,...,T
Complete data {(xit, Xat, - - -, Xnt) Her

- ML estimates for CPTs

root count(X;=x) ¢
Pur (X =x) = ——\A—7A)
nodes M (X =X) T C}

1
= ? Z/(Xftyx)
t

nodes )
with Pur(Xi=x|pa,=7) = count(X;=x, pa;=7) \~

count(pa; =) ——
parents

> 1(Xie, X) /(pait,w)j
I(pajq,
Zr (pay, ) L /167



ML estimation for incomplete data

- Notation
X,

Nodes X1, X0, ...,
~

Examplest=1,2,...,T
Visible nodes V; =v; for t* example
—_

b=

- EM algorithm

Initialize CPTs to nonzero values.
Repeat until convergence:

E-step — compute posterior probabilities.
M-step — update CPTs:

———
root 1
PXi=x) «— =) PXi=x|Vi=v
nodes (=) TE (,’_ Vi=v)
nodes with PO =X|pa=7) > P(Xi=x, pa;=m|Vi=v)
parents — > P(pa;=m|Vi=vt) .



Complete versus incomplete data

- Complete data

root _ — 1 )
Hodes Pu(Xi=x) = 732 1(Xit, X)
nodes
( I(Xit, %) I(paje,m
with PyL(Xi=x|pa;=7) = %
parents ’

- Incomplete data

root B ;
nodes P(X/ _X) — T Zt 'D(X =X \/5 = \/;)

nodes o

with POG=Xlpa =) — Sl
parents t=1 e




Key properties of EM

- No learning rate

The updates do not require the tuning of a learning
rate (p > 0), as in purely gradient-based methods.

- Monotonic convergence

Changes to CPTs from the EM updates always increase
the incomplete-data log-likelihood £ =}, log P(Vr=v1).
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EM Example
Incomplete data {(a¢, ct)}_;
. . . A and C are observed.
B is hidden.
[~ g

- E-step (Inference)

_ P(ct|b) P(blay)
P(blat, cr) = 5=, P(cb') P(D'[ar)

- M-step (Learning)

P(a) = %count(A:a)
P(bla) «— Ztl(avat)P(b‘ataCt)
—J) Yo l(a,ar)
>, (e, c) P(blar, c) €™
E_(_i'b) D tZz P(blat, ct)
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Application

- Statistical language modeling
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Application

- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.
—_
How to model P(w1, wa, ..., w)?
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- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.
How to model P(w1, wa, ..., w)?

- Markov models
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Application

- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.
How to model P(w1, wa, ..., w)?

- Markov models

model‘ P(wy,wa, ... wp) ‘ ML estimate ‘ DAG

uﬂigram‘ [T, Pri(we) ‘ Pr(w) = <ouptl) ‘

14 /167



Application

- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.
How to model P(w1, wa, ..., w)?

- Markov models
model P(wy,wa, ... wp) ML estimate DAG

unigram [T, Pi(we) Pi(w) = %t(w)
bigram [Ty Pa(welwe—q) Py(w'|w) = Cogslinwﬁw _>_>
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Application

- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.
How to model P(w1, wa, ..., w)?

- Markov models

model P(wy,wa, ... wp) ML estimate DAG

unigram [T, Pi(we) Pr(w) = Courit(w)
bigram 1, Pa(we|we—1) Po(w'|w) = %W _>_> _>

trigram H@P3(WZ|WZ—MWZ—2)
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Application

- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.
How to model P(w1, wa, ..., w)?

- Markov models

model P(wy,wa, ... wp) ML estimate DAG

unigram [T, Pi(we) Pr(w) = Courit(w)
bigram 1, Pa(we|we—1) Po(w'|w) = %W _>_> _>

trigram H@P3(WZ|WZ—MWZ—2)

- Evaluating n-gram models
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Application

- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.

How to model P(w1, wa, ..., w)?
- Markov models
model P(wy,wa, ... wp) ML estimate DAG
unigram L1, Pi(we) Pi(w) = Cour[t(w)
bigram [T, P2(welwe—q) Py(w'|w) = %W _>_> _>
trigram | [T,P3(welwg—1, wy_2) :

- Evaluating n-gram models

Train on corpus A =

Pi(A) < P(A) < P3(A)...
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Application

- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.

How to model P(w1, wa, ..., w)?
- Markov models
model P(wy,wa, ... wp) ML estimate DAG
unigram L1, Pi(we) Pi(w) = Cour[t(w)
bigram [T, P2(welwe—q) Py(w'|w) = %W _>_> _>
trigram | [T,P3(welwg—1, wy_2) :

- Evaluating n-gram models

Train on corpus A =
Teston corpus B =

Pi(A) < Py(A) < P3(A)...
P,(B) = 0 if B has unseen bigrams.
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Word clustering
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Word clustering

- Alternative to bigram model
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Word clustering

- Alternative to bigram model

Insert a hidden node Z € {1,2...,C} between the previous and
next words W, W' € {1,2,...,V}.

22 /167



Word clustering

- Alternative to bigram model

Insert a hidden node Z € {1,2...,C} between the previous and
next words W, W' € {1,2,...,V}.

BEFORE AFTER

® ® 0@
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Word clustering

- Alternative to bigram model

Insert a hidden node Z € {1,2...,C} between the previous and
next words W, W' € {1,2,...,V}.

BEFORE AFTER

® ® 0@

Words W and W’ are observed (as before).
The node Zisa latent variable to detect word clusters.
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Word clustering

- Alternative to bigram model
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Word clustering

- Alternative to bigram model

Insert a hidden node Z € {1,2...,C} between the previous and
next words W, W' € {1,2,...,V}.

BEFORE AFTER

® ® 0@

Words W and W’ are observed (as before).
The node Z is a latent variable to detect word clusters.

- Conditional probability tables

P(z|w) is the probability that word w is mapped into cluster z.

—
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Word clustering

- Alternative to bigram model

Insert a hidden node Z € {1,2...,C} between the previous and
next words W, W' € {1,2,...,V}.

BEFORE AFTER

® ® 0@

Words W and W’ are observed (as before).
The node Z is a latent variable to detect word clusters.

- Conditional probability tables

P(z|w) is the probability that word w is mapped into cluster z.
P(wz) is the probability that word w’ follows any word in

cluster z. 57 /167



Computing P(w'|w)
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Computing P(w'|w)

@—00—@
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Computing P(w'|w)

@—00—@

- Inference
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Computing P(w'|w)

@—00—@

- Inference

P(wW'|w)
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Computing P(w'|w)

- Inference

P(w'|w) ZPW zZ|lw)
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Computing P(w'|w)

@—00—@

- Inference

P(wW'|w) ZP W', z|w) ’marginalization‘
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Computing P(w'|w)

@—00—@

- Inference

PWlw) = Y P(W,zlw) ’marginalization‘
z

Z P(wW'|z, w) P(z|w)
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Computing P(w'|w)

@—00—@

- Inference

PWlw) = Y P(W,zlw) ’marginalization‘
z

> Pz, w) P(zlw)
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Computing P(w'|w)

@—00—@

- Inference

P(W'|w) = ZP(W’,Z\W) ’marginalization‘

ZP W' |z, w) P(z|w) product rule
ZP w'|z) P(z|w)
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Computing P(w'|w)

@—00—@

- Inference
P(W|w) = ZP(W’,Z\W) ’marginalization‘
= ZP w'|z, w) P(z|w)
= ZP w'|z) P(z|w) ’conditional independence
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Computing P(w'|w)

@—00—@

- Inference
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Computing P(w'|w)

@—00—@

- Inference
P(W|w) = ZP(W’,Z\W) ’marginalization‘
= ZP w'|z, w) P(z|w)
= ZP w'|z) P(z|w) ’conditional independence

- Matrix factorization

VxV

N contha
The above expresses the matrix P(w’|w) as the product of
the two smaller matrices P(w’|z) and P(z|w).
N—_—— N——

VxC CxV
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Model complexity
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Model complexity

- Parameter count
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Model complexity

- Parameter count

size of vocabulary %
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Model complexity

- Parameter count

size of vocabulary %
number of clusters C
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Model complexity

- Parameter count

size of vocabulary %
number of clusters C
parameters in cluster model 2CV P(wW'|z), P(z|w)
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Model complexity

- Parameter count

size of vocabulary %

number of clusters C

parameters in cluster model 2CV P(wW'|z), P(z|w)
parameters in bigram model V2 P(W'|w)
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Model complexity

- Parameter count

size of vocabulary %

number of clusters C

parameters in cluster model 2CV P(wW'|z), P(z|w)
parameters in bigram model V2 P(W'|w)
parameters in unigram model V P(w)
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Model complexity

- Parameter count

size of vocabulary %

number of clusters C

parameters in cluster model 2CV P(wW'|z), P(z|w)
parameters in bigram model V2 P(W'|w)
parameters in unigram model V P(w)

- Compact representations of complex worlds
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Model complexity

- Parameter count

size of vocabulary %

number of clusters C

parameters in cluster model 2CV P(wW'|z), P(z|w)
parameters in bigram model V2 P(W'|w)
parameters in unigram model V P(w)

- Compact representations of complex worlds

Setting C=1, we recover the unigram model.
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Model complexity

- Parameter count

size of vocabulary %

number of clusters C /" /7
parameters in cluster model 2CV P(wW'|z), P(z|w)
parameters in bigram model V2 P(W'|w) —ﬁ
parameters in unigram model V P(w) {

- Compact representations of complex worlds

— Settinqu:t we recover the unigram model.
— Aetting C=V, we recover the bigram model.

'e
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Model complexity

- Parameter count

size of vocabulary %

number of clusters C

parameters in cluster model 2CV P(wW'|z), P(z|w)
parameters in bigram model V2 P(W'|w)
parameters in unigram model V P(w)

- Compact representations of complex worlds

Setting C=1, we recover the unigram model.
Setting C=V, we recover the bigram model.
In between, we are exploring a range of different models.
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EM algorithm
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EM algorithm

The model is the same as our previous example.
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference

P(z|wg, Wyyq)

55 /167



EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference

P(Wey1|2) P(z|we)

P 0y We+1) =
W) = S B 2?) P2 i)
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference

P(Wey1|2) P(z|we)

P(z|We, West) =
W) = S B 2?) P2 i)

- M-step - Learning
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference

P(Wey1|2) P(z|we)

P(z|We, West) =
W) = S B 2?) P2 i)

- M-step - Learning

P(zlw) +—
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference

P(Wey1|2) P(z|we)

P . n P _
(Z|we, Wpiq) > P(Wega|2") P(Z'|wy)

- M-step - Learning

&
> o (W, we)P(z|wg, Weiq) fos

2o l(w; wy)

P(zlw) +—
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference

P(Wey1|2) P(z|we)

P(z|We, West) =
W) = S B 2?) P2 i)

- M-step - Learning

oo 1w, we)P(z|wy, weq)
2o 1w, we)

P(zlw) +—

P(W'|z) <«—
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference

P(Wey1|2) P(z|we)

P(z|We, West) =
W) = S B 2?) P2 i)

- M-step - Learning

oo 1w, we)P(z|wy, weq)

Pleiw) = S, 1w, wi)
, S l(W s wogq) P(z|wp, wpq)
PIVlz) = : >0 P(?\W(-Wf 1)
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Experimental results

- Data set

60K-word vocabulary
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- Data set

60K-word vocabulary
80M-word corpus of news articles
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- Data set

60K-word vocabulary
80M-word corpus of news articles
count(w — w') is 99% sparse.
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Experimental results

- Data set

60K-word vocabulary
80M-word corpus of news articles
count(w — w') is 99% sparse.

- Model ‘ @ '

The goal is to estimate P(z|w) and P(w'|z).
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Experimental results

- Data set

60K-word vocabulary
80M-word corpus of news articles
count(w — w') is 99% sparse.

- Model ‘ @ '

The goal is to estimate P(z|w) and P(w'|z).
For C=32 clusters, these CPTs have 3.84M entries.
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- Data set
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The goal is to estimate P(z|w) and P(w'|z).
For C=32 clusters, these CPTs have 3.84M entries.
EM converges in 30 iterations.
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Experimental results

- Data set

60K-word vocabulary
80M-word corpus of news articles
count(w — w') is 99% sparse.

- Model ‘ @ '

The goal is to estimate P(z|w) and P(w'|z).
For C=32 clusters, these CPTs have 3.84M entries.
EM converges in 30 iterations.

- Results

The model has no prior knowledge of word meanings.

72 /167



Experimental results

- Data set

60K-word vocabulary
80M-word corpus of news articles
count(w — w') is 99% sparse.

- Model ‘ @ '

The goal is to estimate P(z|w) and P(w'|z).
For C=32 clusters, these CPTs have 3.84M entries.
EM converges in 30 iterations.

- Results

The model has no prior knowledge of word meanings.
Which words does it cluster? Look at argmax, P(z|w).
73167



Word clusters
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Word cluste

as cents made make take

ago day earlier Friday Monday month quarter
reported said Thursday trading Tuesday
Wednesday (...)

-
19 Jbillion hundred million nineteen \
20 THETT d
21 |but called San (:) (start-of-sentence)

even get to

based days down home months up work years
%)

22

bank board chairman end group members
number office out part percent price prices rate
sales shares use

those () (—)

23

a an another any dollar each first good her his its
my old our their this

2

eighty fifty forty ninety seventy sixty thirty /
dventy (0 ()

can could may should to will would

ong Mr. ye:

usimess California case companies corporation
dollars incorporated industry law money
thousand time today war week ()) (unknown)

about at just only or than (&) (;)

economic high interest much no such tax united
well

26

also government he it market she that there
which who

27

A.B.C.D.E.F.G.LL.M.N.P.R.S. T. U. &

both foreign international major many new oil

national party political state union York

side: 28 S
11 | president other some Soviet stock these west world
19 | because do how if most say so then think very after all among and before between by during for
what when where 29 |from in including into like of off on over since
13 |according back expected going him plan used way through told under until while with
15 |don’t I people they we you eight fifteen five four half last next nine oh one
16 Bush company court department more officials 30 |second seven several six ten third three twelve
e retort spokesman two zero (-)

p— 31 |are be been being had has have is it's not still

1 American big city federal general house military was were
32 |chief exchange news public service trade
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Word cluste

1 |as cents made make take 19 |billion hundred million nineteen
ago day earlier Friday Monday month quarter 20 [did (") ()
2 s\:{pgrteddsaid Thursday trading Tuesday 21 |but called San (:) (start-of-sentence)
5 cvzn";:t = €0 bank board chairman end group members
22 |number office out part percent price prices rate
4 b’?sed days down home months up work years sales shares use
(%) 93 |a an another any dollar cach first good her his its
5 |those (,) (—) my old our their this
6[() (7 24 |long Mr. year
. cighty fifty forty ninety seventy sixty thirty business California case companies corporation
twenty (() (-) 25 |dollars incorporated industry law money
8 |can could may should to will would thousand time today war week ()) (unknown)
9 |about at just only or than (&) () o6 |also government he it market she that there
2 which who
10 | economic high interest much no such tax united | [37[A. B. C. D. . F. G. L L. M. N. P. R. S, T. U.
wcll. 28 both foreign international major many new oil
1 |president other some Soviet stock these west world
19 | because do how if most say so then think very after all among and before between by during for
what when where 29 |from in including into like of off on over since
13 |according back expected going him plan used way through told under until while with
15 |don’t I people they we you eight fifteen five four half last next nine oh one
6 Bush company court department more officials 30 |second seven several six ten third three twelve
! police retort spokesman two zero (-)
17 | former the 31 |are be been being had has have is it's not still
18 American big city federal general house military was were . .
national party political state union York 32 |chief exchange news public service trade

The table shows the most likely cluster assignments argmax, P(z|w)

for the 300 most common tokens in the corpus.
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Example : Noisy-OR
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‘\K /‘ x; € {0,1}
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‘\K /‘ x; € {0,1}

‘ P(Y:”X%XZM'WXH):1_1_[?:1(1_pl—)Xi

80 /167



‘\K /‘ xi € {0,1}

‘ P(Y=1[X1,X2, ..., Xn) = 1= TIiL,(1 = p;)%

The log (conditional) likelihood is >~ log P(yt|xt).

81/ 167



‘\K /‘ xi € {0,1}

P(Y=1[X1,X2, ..., Xn) = 1= TIiL,(1 = p;)%

The log (conditional) likelihood is >~ log P(yt|xt).
How to estimate parameters p; € [0, 1] that maximize this?
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‘\K /‘ xi € {0,1}

P(Y=1[X1,X2, ..., Xn) = 1= TIiL,(1 = p;)%

The log (conditional) likelihood is >~ log P(yt|xt).
How to estimate parameters p; € [0, 1] that maximize this?

EM
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‘\K /‘ x; € {0,1}

P(Y=1[X1,X2, ..., Xn) = 1= TIiL,(1 = p;)%
The log (conditional) likelihood is >~ log P(yt|xt).

How to estimate parameters p; € [0, 1] that maximize this?

EM — but how? Isn’t the data complete?
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EM for noisy-OR
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EM for noisy-OR

’ ’ ’x,e{o,ﬂ
o, A
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EM for noisy-OR

’ ’ ’x,e{o,ﬂ
g, A
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EM for noisy-OR

*e o
zi € {0,1}
‘ P(Zi=1|x;) = pix;

89 /167



EM for noisy-OR

*e o
zi € {0,1}
‘ P(Zi=1|x;) = pix;

P(Y=1Z1,...,2Z,) = OR(Z1,...,Zy)
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EM for noisy-OR

*e o
zi € {0,1}
‘ P(Zi=1|x;) = pix;

P(Y=1Z1,...,2Z,) = OR(Z1,...,Zy)

HW 5
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EM for noisy-OR

zi € {0,1}
P(Zi=1|x;) = pix;

—1|Z1,,Zn) = OR(Z‘],,ZH)

Xi € {0,1}

HW 5

First you will show that this model is equivalent to noisy-OR.
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EM for noisy-OR

z, € {0,1}
(Zi=1lx) = = piXi,

(Y=1Z1,...,2,) = OR(Z1,. ... Zp)

Xj € {0,1}

HW 5

First you will show that this model is equivalent to noisy-OR.
Then you will derive the EM updates for p; € [0,1].
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Hidden Markov Models




Markov Models (Review)

O—O—0—0— -~ OO
Two simplifying assumptions:

1. Finite Context

2. Position Invariance
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Hidden Markov models (HMMs)
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Hidden Markov models (HMMs)

V‘.-s:lbfr_, ‘

Hodde ™ é
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Hidden Markov models (HMMs)

- Random variables
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Hidden Markov models (HMMs)

A
- Random variables

St €{1,2,...,n} hidden state at time t
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Hidden Markov models (HMMs)

A
- Random variables

St €{1,2,...,n} hidden state at time t
Or € {1,2,...,m} observation attimet

- States versus observations
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Hidden Markov models (HMMs)

2 e e e ®

®
OO0 OO

- Random variables

St €{1,2,...,n} hidden state at time t
Or € {1,2,...,m} observation attimet

- States versus observations

Each observation Oy is a noisy, partial reflection of the true
underlying (but hidden) state S; of the world at time t.
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Hidden Markov models (HMMs)

A
- Random variables

St €{1,2,...,n} hidden state at time t
Or € {1,2,...,m} observation attimet

- States versus observations

Each observation Oy is a noisy, partial reflection of the true
underlying (but hidden) state S; of the world at time t.

What makes this model so useful?
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.

Ot
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.

O; € {sleeping,

106 / 167



Housetraining a puppy

This is Bubbles.
She’s an english spanador.

O: € {sleeping, eating,
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.

O: € {sleeping, eating, barking,
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.

O; € {sleeping, eating, barking, waiting by door, etc.}
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.

O; € {sleeping, eating, barking, waiting by door, etc.}
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Housetraining a puppy
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.

O; € {sleeping, eating, barking, waiting by door, etc.}
Si € {playful, hungry, tired,ready to burst}

Does she need to go outside?
What is P(s¢|01, 0o, ..., 01)?
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Time domain signal - before physical actiity
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O is the acoustic feature vector for windowed speech at time t.

phoneme) being uttered at time

eg.,

(

St is the unit of language

What did | just hear?

,ST

What is argmax., o, -
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Indoor robot navigation

O; encodes the sensor readings at time t.

122 /167



Indoor robot navigation

O; encodes the sensor readings at time t.
St encodes the robot location at time t.
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Indoor robot navigation

O; encodes the sensor readings at time t.
St encodes the robot location at time t.

Location in the room:

124 /167



Indoor robot navigation

O; encodes the sensor readings at time t.
St encodes the robot location at time t.

Location in the room: what is P(s¢|01,02,...,0¢)?
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HMMs as belief networks

Q. Which of the following statements are True?
A. P(S5¢|51,52,...,5t_1) = P(St|St_1) v~
_B. P(04S1,5,.,5t) = P(O4S) v~
C. P(St|St—1) = P(S¢|St—1,01) ANO
_—

— &

(.E.AandB >

E. A, BandC
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- Conditional independence assumptions

P(5¢|51,S2, ..., St-1)
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- Conditional independence assumptions

&)
P(St|51,52,...75t_1) = P(St|5t_1)

S

4
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S 4l
- Conditional independence assumptions

&
P(St|51,52,...75t_1) = P(St|5t_1)
P(Ot|5h527 cee 7ST)

S

4
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S 4l
- Conditional independence assumptions

OBO
P(5¢|51,S2,...,5t=1) = P(St|St-1)
P(Ot|5‘\,52,~--7ST) = P(O[|S[)

S

4
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HMMs as belief networks

@ © © @ @
OO0 -
- Conditional independence assumptions

\Z 2 2
P(5¢|51,S2,...,5t=1) = P(St|St-1)
P(Ot|5‘\,52,~--7ST) = P(O[|S[)

- CPTs are shared across time
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HMMs as belief networks
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- Conditional independence assumptions

\Z 2 2
P(5¢|51,S2,...,5t=1) = P(St|St-1)
P(Ot|5‘\,52,~--7ST) = P(O[|S[)

- CPTs are shared across time

P(St:S/|S[,’ :S)
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HMMs as belief networks

® © © @
I L1

&

S

- Conditional independence assumptions
P(5¢|51,S2, ..., St-1)
P(Ot|5h527 cee 7ST)

- CPTs are shared across time

= P(St|5t_1)
P(O[St)

P(St=5"|St 1=5) P(St1=5|St=5)
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HMMs as belief networks
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3 4

- Conditional independence assumptions
P(5¢|51,S2, ..., St-1)
P(Ot|5h527 cee 7ST)

- CPTs are shared across time

= P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)

P(St 1:S/|SIZS)
P(Ot:O|St:S)
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3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot:O|St:S)

P(St 1:S/|SIZS)
P(Ot \:O|SU ‘:S)
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HMMs as belief networks

® ©
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3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(St 1:S/|SIZS)
P(Ot \:O|SU ‘:S)
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HMMs as belief networks

® ©
O—O-O—O-

3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(

P(St 1:S/|SIZS)
P(Ot \:O|SU ‘:S)
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HMMs as belief networks

® ©
O—O-O—O-

3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(S:=5'|St-1=5)
P(Or=0]St=5s)
- Joint distribution
P(S,...,Sr

P(St 1:S/|SIZS)
P(Ot \:O|SU ‘:S)
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HMMs as belief networks

® ©
O—O-O—O-

3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(S,...,Sr,
—

P(St 1:S/|SIZS)
P(Ot \:O|SU ‘:S)
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HMMs as belief networks
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3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(St 1:S/|SIZS)
P(Ot \:O|SU ‘:S)

P(S1,...,Sr,01,...,07
—
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HMMs as belief networks
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3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(St 1:S/|SIZS)
P(Ot \:O|SU ‘:S)

P(S1,...,S7,01,...,0r) =
\ﬁ(_/\w_/
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HMMs as belief networks

® ©
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3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(St 1:S/|SIZS)
P(Ot \:O|SU ‘:S)

P(Si,...,5r,0n,...,0r) = P(51)
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HMMs as belief networks

® ©
O—O-O—O-

3 4

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(St 1:S/|SIZS)
P(Ot,1=0|St,1=5)

P(S1,...,ST,O1,...,OT) == P(S‘\)P(OW|SW)
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HMMs as belief networks

® ©
O—O-O—O-

G )&

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

= P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

.
P(S1,....51,01,...,01) = P(S)PO1IS) ]
\ﬁ(_/\w_/

t=2

P(St 1:S/|SIZS)
P(Ot,1=0|St,1=5)
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HMMs as belief networks

® ©
O—O-O—O-

G )&

- Conditional independence assumptions
P(S¢S1,S2, .-, Si—1)

P(Ot|5h527 cee 7ST)

- CPTs are shared across time

= P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(St 1:S/|SIZS)
P(Ot 1:O|SU" :S)

.
P(Si,...,57,01,...,01) = P(51) P(01]Sy) H|: (St|St-1)

t=2
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HMMs as belief networks

® ©
O—O-O—O-

@ @
- Conditional independence assumptions
P(StS1, 52, - -, St—1)
P(0¢|S1, S, ..., 57)

- CPTs are shared across time

= P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(St 1:S/|SIZS)
P(Ot 1:O|SU" :S)

.
P(Si,...,S7,01,...,07) = P(S1)P(01]S1) H{ (St|St—1) P(O¢|Se)

t=2
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Parameters of HMMs

I
\Sy ‘\s-z :‘) " —

Q. Which of the following is NOT a parameter of the model?
A PSS
—_— >
— TR
C. P(01|0;—1) &
O

@Aore than one of these is NOT a parameter‘of the model.
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Parameters of HMMs

®© @ @ ® ©
OO0 O

a;, = P(St41=J|St=1) ’n x n transition matrix‘
—_—

—
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a;, = P(St41=J|St=1) ’n x n transition matrix‘

b, = P(Otzmsf:/‘)
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Parameters of HMMs
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a;, = P(St41=J|St=1) ’n x n transition matrix‘
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Parameters of HMMs

S6 ol

a; = P(Sty=J|St=1) ’ nxn transition matrix‘
b, = P(Or=Fk|St=1) ’nxm emission matrix‘
T
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Parameters of HMMs

? 2

a; = P(Sty=J|St=1) ’ nxn transition matrix‘
b, = P(Or=Fk|St=1) ’nxm emission matrix‘
i = P(S1 :/)
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Parameters of HMMs

? 2

a; = P(Sty=J|St=1) ’ nxn transition matrix‘
b, = P(Or=Fk|St=1) ’nxm emission matrix‘
T = P(S=1) ] nx1initial state distribution \
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Parameters of HMMs

? 2

a; = P(Sty=J|St=1) ’ nxn transition matrix‘
b, = P(Or=Fk|St=1) ’nxm emission matrix‘
T = P(S=1) ] nx1initial state distribution \
Az B
[ HMM is a polytree. True or False? ]
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"Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. 160 / 167
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Inference

1. How to compute the likelihood P(04,0,,...,07)?
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1. How to compute the likelihood P(04,0,,...,07)?

2. How to compute the most likely state sequence argmaxz P(5]0)?
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Key computations in HMMs'

I I POLYTREE!

Inference

1. How to compute the likelihood P(04,0,,...,07)?

N

2. How to compute the most likely state sequence argmaxz P(5]0)?

3. How to update beliefs by computing P(st|01,02,...,0¢)?

Learning

How to estimate parameters {7, aj, bj} that maximize the
log-likelihood of observed sequences?

"Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. 166 / 167




That's all folks!
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